ВСЕ СОЧИНЕНИЯ

Поиск
Меню сайта
Форма входа



Статистика

Онлайн всего: 28
Гостей: 28
Пользователей: 0


Сочинения » Математика » Теория вероятности Добавить сочинение

Повторение опытов (при большом N)

ТЕМА 6. Повторение опытов (при большом N).

 

Основные определения и формулы:

Пусть в каждом из независимых испытаний событие А может произойти с вероятностью q, q = 1 – p. Обозначим как и раньше, через P(n;k) вероятность ровно к появлений события А в n испытаниях. кроме того, пусть P(n; k1, k2) – вероятность того, что число появлений события А находится между к1и к2.

 

Локальная теорема Лапласа. Если n – велико, а р – отлично от 0 и 1, то

P(n;k)

где  - функция Гаусса.

Интегральная теорема Лапласа. Если n – велико, а р – отлично от 0 и 1, то

P(n; k1, k2)

где - функция Лапласа.

Функции Гаусса и Лапласа обладают свойствами, которые необходимо знать при использовании таблиц значений этих функций: а) j(-х) = j(х), F(-х) = -F(х); б) при больших х j(х) » 0, F(х) » 0,5.

Теоремы Лапласа дают удовлетворительное приближение при    npq ³ 9.

 

Теорема Пуассона. Если n – велико, а р – мало, то

P(n;k), где l = n*p.

Эта формула дает удовлетворительное приближение для р £ 0,1и np £ 10. При больших np рекомендуется применять формулы Лапласа.

 

Решение типовых примеров :

Пример 1. Пусть т – число появлений события А в n независимых испытаниях. Чему равна вероятность того, что частота т/п события А отклонится от его вероятности р не более чем на e?

Решение :

Итак, искомая вероятность приближенно равна

Пример 2. В продукции некоторого производства брак составляет 15%. Изделия отправляются потребителям (без проверки) в коробках по 100 штук. Найти вероятности событий:

В – наудачу взятая коробка содержит 13 бракованных изделий;

С – число бракованных изделий в коробке не превосходит 20

Решение :

Изготовление детали – это испытание, в котором может появиться событие А – изделие бракованное – с вероятностью р = 0,15. Находим пр = 15, npq = 12,75. Можно применять формулы Лапласа:

Р(В) = Р(100;13) 0,28j(-0,56) = 0,28*0,341 = 0,095.

Р(С) = Р(100; 0, 20)

Значения функций Гаусса и Лапласа нашли по таблицам с учетом их свойств. Как интерпретировать результат? Приблизительно 9,5% всех коробок содержат 13 бракованных изделий и в 92% коробок число бракованных не превосходит 20.

 

Пример 3. Известно, что только 80% семян некоторой культуры дают полноценные растения. Сколько семян нужно посадить, чтобы с вероятностью не меньшей 0,95 получить, по крайней мере, 100 растений?

Решение :

Поведение семян в почве – это испытание, событие А – семя дало полноценное растение, р = 0,8. Неизвестное число испытаний п должно удовлетворять неравенству:

Р(п; 100, п) ³ 0,95, причем п > 100.

Используем формулу Лапласа:

Р(n; 100, n)

Учитывая свойства функции Лапласа, получим:

Из таблицы значений функции Лапласа находим: 0,45 = F(1,645). Учитывая еще и возрастание F(х) получаем неравенство для определения п:

Решая его, получаем: , т.е. п ³135.

Итак, посеяв 135 (или более) семян можно с вероятностью 0,95 гарантировать получение, по крайней мере, 100 полноценных растений.

 

Пример 4, имеется АТС, которая обслуживает 1000 абонентов. Для каждого их них вероятность воспользоваться услугами АТС в течении одной минуты равна 0,003. Для выбранной наудачу минуты найти вероятности событий: В – ровно 5 вызовов на АТС, С – не более двух вызовов, D – хотя бы один вызов.

Решение :

Поведение абонента в течении одной минуты – это испытание, событие А – абонент воспользовался услугами АТС, р = 0,003, nр = 3. Используем формулу Пуассона, причем l = 3:



Беру это сочинение!

Похожие сочинения
Категория: Теория вероятности | Добавил: Admin (18 Сентября 2012) | Обновлено | Просмотров: 2460 | Рейтинг: 0.0 /0
Перейти на главную страницу

Сообщить об ошибке!

Понравилось? Оставь отзыв

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Sochineniya.info © 2021
Хостинг от uCoz